A memetic algorithm for cardinality-constrained portfolio optimization with transaction costs
نویسندگان
چکیده
A memetic approach that combines a genetic algorithm (GA) and quadratic programming is used to address the problem of optimal portfolio selection with cardinality constraints and piecewise linear transaction costs. The framework used is an extension of the standard Markowitz mean–variance model that incorporates realistic constraints, such as upper and lower bounds for investment in individual assets and/or groups of assets, and minimum trading restrictions. The inclusion of constraints that limit the number of assets in the final portfolio and piecewise linear transaction costs transforms the selection of optimal portfolios into a mixed-integer quadratic problem, which cannot be solved by standard optimization techniques. We propose to use a genetic algorithm in which the candidate portfolios are encoded using a set representation to handle the combinatorial aspect of the optimization problem. Besides specifying which assets are included in the portfolio, this representation includes attributes that encode the trading operation (sell/hold/buy) performed when the portfolio is rebalanced. The results of this hybrid method are benchmarked against a range of investment strategies (passive management, the equally weighted portfolio, the minimum variance portfolio, optimal portfolios without cardinality constraints, ignoring transaction costs or obtained with L1 regularization) using publicly available data. The transaction costs and the cardinality constraints provide regularization mechanisms that generally improve the out-of-sample performance of the selected portfolios. © 2015 Elsevier B.V. All rights reserved.
منابع مشابه
Stock Portfolio-Optimization Model by Mean-Semi-Variance Approach Using of Firefly Algorithm and Imperialist Competitive Algorithm
Selecting approaches with appropriate accuracy and suitable speed for the purpose of making decision is one of the managers’ challenges. Also investing decision is one of the main decisions of managers and it can be referred to securities transaction in financial markets which is one of the investments approaches. When some assets and barriers of real world have been considered, optimization of...
متن کاملA Robust Knapsack Based Constrained Portfolio Optimization
Many portfolio optimization problems deal with allocation of assets which carry a relatively high market price. Therefore, it is necessary to determine the integer value of assets when we deal with portfolio optimization. In addition, one of the main concerns with most portfolio optimization is associated with the type of constraints considered in different models. In many cases, the resulted p...
متن کاملArtificial bee colony algorithm for constrained possibilistic portfolio optimization problem
In this paper, we discuss the portfolio optimization problem with real-world constraints under the assumption that the returns of risky assets are fuzzy numbers. A newpossibilistic mean-semiabsolute deviation model is proposed, in which transaction costs, cardinality and quantity constraints are considered. Due to such constraints the proposed model becomes a mixed integer nonlinear programming...
متن کاملHybridising Local Search With Branch-And-Bound For Constrained Portfolio Selection Problems
In this paper, we investigate a constrained portfolio selection problem with cardinality constraint, minimum size and position constraints, and non-convex transaction cost. A hybrid method named Local Search Branch-and-Bound (LS-B&B) which integrates local search with B&B is proposed based on the property of the problem, i.e. cardinality constraint. To eliminate the computational burden which i...
متن کاملEvolutionary Algorithms and the Cardinality Constrained Portfolio Optimization Problem
While the unconstrained portfolio optimization problem can be solved efficiently by standard algorithms, this is not the case for the portfolio optimization problem with additional real world constraints like cardinality constraints, buy-in thresholds, roundlots etc. In this paper we investigate two extensions to Evolutionary Algorithms (EA) applied to the portfolio optimization problem. First,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Appl. Soft Comput.
دوره 36 شماره
صفحات -
تاریخ انتشار 2015